影像组学的量化CT参数对良性肺结节与恶性肿瘤的诊断价值分析
DOI:
作者:
作者单位:

抚州市美年大健康医学体检中心

作者简介:

通讯作者:

中图分类号:

基金项目:


The diagnostic value of quantitative CT parameters of radiomics in benign pulmonary nodules and malignant tumors was analyzed.
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的:探究影像组学的量化CT参数对良性肺结节与恶性肿瘤的诊断价值。方法:回顾性分析我院2023年6月至2025年6月间经病理确诊的60例肺结节患者资料,分为恶性肿瘤组(36例)与良性结节组(24例)。所有患者均行胸部CT平扫。通过Pyradiomics软件提取9个量化CT参数,包括形态学(球形度)、一阶统计量(均值、标准差、偏度、峰度)及纹理特征(能量、对比度、相关性、熵)。同时,记录资深医师主观评分及血清CEA、CYFRA21-1水平作为参照。采用ROC曲线评估各指标诊断性能。结果:与良性组相比,恶性肿瘤组的偏度、峰度和熵值显著更高,球形度显著更低(P<0.05)。在单项参数中,熵(E4)的诊断性能最佳,AUC为0.910(95%CI: 0.831-0.989),敏感度91.67%,特异度83.33%。峰度(A5)的AUC为0.892。熵(E4)的AUC显著优于血清标志物CEA(0.725)和CYFRA21-1(0.751)(P<0.05)。峰度(A5)与熵(E4)的平行组合可将敏感度提升至94.44%。结论:量化CT参数,尤其是纹理特征“熵”和一阶统计量“峰度”,在鉴别肺结节良恶性方面具有很高的诊断价值,优于部分常规血清肿瘤标志物,可作为一种有前景的、客观的非侵入性辅助诊断工具。

    Abstract:

    Objective: To explore the diagnostic value of quantitative CT parameters of radiomics in benign pulmonary nodules and malignant tumors.Methods: We retrospectively analyzed data from 60 patients with pathologically confirmed pulmonary nodules at our hospital between June 2023 and June 2025, dividing them into a malignant tumor group (36 cases) and a benign nodule group (24 cases). All patients underwent plain chest CT. Nine quantitative CT parameters were extracted using Pyradiomics software, including morphological (sphericity), first-order statistical (mean, standard deviation, skewness, kurtosis), and texture features (energy, contrast, correlation, entropy). Concurrently, senior radiologist subjective scores and serum CEA/CYFRA21-1 levels were recorded as reference standards. Diagnostic performance was evaluated using ROC curves. Results: Compared to the benign group, the malignant group exhibited significantly higher skewness, kurtosis, and entropy values, along with significantly lower sphericity (P<0.05). Among individual parameters, entropy (E4) demonstrated the highest diagnostic performance with an AUC of 0.910 (95% CI: 0.831–0.989), sensitivity of 91.67%, and specificity of 83.33%. The AUC for kurtosis (A5) was 0.892. The AUC for entropy (E4) was significantly superior to that of serum markers CEA (0.725) and CYFRA21-1 (0.751) (P<0.05). The parallel combination of kurtosis (A5) and entropy (E4) increased sensitivity to 94.44%. Conclusion: Quantitative CT parameters, particularly the texture feature “entropy” and the first-order statistic “kurtosis,” demonstrate high diagnostic value in distinguishing benign from malignant pulmonary nodules. They outperform certain conventional serum tumor markers and represent a promising, objective, non-invasive adjunct diagnostic tool.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-10-27
  • 最后修改日期:2025-11-11
  • 录用日期:2025-11-14
  • 在线发布日期:
  • 出版日期: