基于CT影像组学预测儿童恶性外周神经母细胞性肿瘤的风险分层
DOI:
作者:
作者单位:

江西省儿童医院

作者简介:

通讯作者:

中图分类号:

基金项目:

江西省卫生健康委科技计划(编号:202510567);


Risk Stratification of Pediatric Malignant Peripheral Neuroblastoma Based on CT Radiomics#
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    目的:本研究旨在探索并验证基于CT影像组学在儿童恶性外周神经母细胞性肿瘤(pNTs)术前风险分层中的应用价值。方法:收集我院2016年12月~2024年12月收治的160 例恶性pNTs患儿的临床资料进行分析,按7∶3 比例分为训练组(n=112)和测试组(n=48)。根据儿童肿瘤协作组(COG)标准确定风险分层,将患儿分为高危组和非高危组(中危组+低危组);从CT平扫及增强动脉期、静脉期图像中提取影像学特征,经降维和特征筛选后,采用逻辑回归(LR)构建影像组学模型。通过对临床影像学特征进行单因素和多因素LR分析确定变量并建立临床模型;将影像组学特征与临床特征整合,构建联合模型。采用受试者工作特征(ROC)曲线分析评估模型性能,采用决策曲线分析(DCA)评估模型的临床价值。结果:从CT平扫及增强动脉期、静脉期图像的感兴趣区中提取到3591个影像组学特征,最终筛选出7个有价值的影像组学特征。使用LR构建影像组学模型(R-score)在训练组的曲线下面积(AUC)为 0.843,测试组的AUC为0.820。基于筛选后的临床特征构建临床模型;联合模型的鉴别能力优于临床模型和影像组学模型(训练组AUC= 0.854,测试组AUC=0.859),且DCA显示在一定阈值范围内具有最佳的临床净收益。结论:整合患儿的临床特征及影像组学的联合模型对儿童恶性pNTs在COG风险分层中区分能力较强,为临床治疗前决策提供了一种无创且有效的方法。

    Abstract:

    Objective: This study aimed to explore and validate the application value of CT radiomics in preoperative risk stratification for pediatric malignant peripheral neuroblastoma tumors (pNTs). Methods: Clinical data from 160 pediatric patients with malignant pNTs admitted to our hospital between December 2016 and December 2024 were collected and analyzed. The cohort was divided into a training group (n=112) and a testing group (n=48). Risk stratification was determined according to the Children"s Oncology Group (COG) criteria, classifying patients into high-risk and non-high-risk groups (intermediate-risk + low-risk). Imaging features were extracted from non-contrast CT scans and contrast-enhanced arterial and venous phase images. After dimensionality reduction and feature selection, a radiomics model was constructed using logistic regression (LR). Univariate and multivariate LR analyses of clinical and imaging features identified variables for establishing clinical models. Imaging and clinical features were integrated to construct combined models. Model performance was evaluated using receiver operating characteristic (ROC) curves, and clinical utility was assessed via decision curve analysis (DCA). Results: A total of 3,591 radiomics features were extracted from regions of interest (ROIs) in plain CT, enhanced arterial phase, and venous phase images. Ultimately, seven valuable radiomics features were selected. The radiomics model (R-score) constructed using LR achieved an area under the curve (AUC) of 0.843 in the training group and 0.820 in the testing group. A clinical model was constructed based on the selected clinical features. The combined model demonstrated superior discriminatory ability compared to both the clinical model and the radiomics model (training group AUC = 0.854, testing group AUC = 0.859). Decision curve analysis (DCA) indicated optimal clinical net benefit within a specific threshold range. Conclusion: The combined model integrating pediatric clinical features and radiomics demonstrates strong discriminatory ability for COG risk stratification in pediatric malignant pNTs, providing a noninvasive and effective approach for pre-treatment decision-making.

    参考文献
    相似文献
    引证文献
引用本文
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2025-09-10
  • 最后修改日期:2025-09-25
  • 录用日期:2025-09-30
  • 在线发布日期:
  • 出版日期: